Абсолютная температура идеального газа. Понятие температуры. Абсолютная температурная шкала Температура и ее определение

История

Слово «температура» возникло в те времена, когда люди считали, что в более нагретых телах содержится большее количество особого вещества - теплорода, чем в менее нагретых. Поэтому температура воспринималась как крепость смеси вещества тела и теплорода. По этой причине единицы измерения крепости спиртных напитков и температуры называются одинаково - градусами.

Из того, что температура - это кинетическая энергия молекул, ясно, что наиболее естественно измерять её в энергетических единицах (т.е. в системе СИ в джоулях). Однако измерение температуры началось задолго до создания молекулярно-кинетической теории, поэтому практические шкалы измеряют температуру в условных единицах - градусах.

Шкала Кельвина

В термодинамике используется шкала Кельвина, в которой температура отсчитывается от абсолютного нуля (состояние, соответствующее минимальной теоретически возможной внутренней энергии тела), а один кельвин равен 1/273.16 расстояния от абсолютного нуля до тройной точки воды (состояния, при котором лёд, вода и водяной пар находятся в равновесии). Для пересчета кельвинов в энергетические единицы служит постоянная Больцмана. Используются также производные единицы: килокельвин, мегакельвин, милликельвин и т.д.

Шкала Цельсия

В быту используется шкала Цельсия, в которой за 0 принимают точку замерзания воды, а за 100° точку кипения воды при атмосферном давлении. Поскольку температура замерзания и кипения воды недостаточно хорошо определена, в настоящее время шкалу Цельсия определяют через шкалу Кельвина: градус Цельсия равен кельвину, абсолютный ноль принимается за −273,15 °C. Шкала Цельсия практически очень удобна, поскольку вода очень распространена на нашей планете и на ней основана наша жизнь. Ноль Цельсия - особая точка для метеорологии , поскольку замерзание атмосферной воды существенно всё меняет.

Шкала Фаренгейта

В Англии и, в особенности, в США используется шкала Фаренгейта. В этой шкале на 100 градусов раздёлен интервал от температуры самой холодной зимы в городе, где жил Фаренгейт, до температуры человеческого тела. Ноль градусов Цельсия - это 32 градуса Фаренгейта, а градус Фаренгейта равен 5/9 градуса Цельсия.

В настоящее время принято следующее определение шкалы Фаренгейта: это температурная шкала, 1 градус которой (1 °F) равен 1/180 разности температур кипения воды и таяния льда при атмосферном давлении, а точка таяния льда имеет температуру +32 °F. Температура по шкале Фаренгейта связана с температурой по шкале Цельсия (t °С) соотношением t °С = 5/9 (t °F - 32), то есть изменение температуры на 1 °F соответствует изменению на 5/9 °С. Предложена Г. Фаренгейтом в 1724.

Шкала Реомюра

Предложенна в 1730 году Р. А. Реомюром, который описал изобретённый им спиртовой термометр.

Единица - градус Реомюра (°R), 1 °R равен 1/80 части температурного интервала между опорными точками - температурой таяния льда (0 °R) и кипения воды (80 °R)

1 °R = 1,25 °C.

В настоящее время шкала вышла из употребления, дольше всего она сохранялась во Франции, на родине автора.

Пересчёт температуры между основными шкалами

Кельвин

Цельсий

Фаренгейт

Кельвин (K)

С + 273,15

= (F + 459,67) / 1,8

Цельсий (°C)

K − 273,15

= (F − 32) / 1,8

Фаренгейт (°F)

K · 1,8 − 459,67

C · 1,8 + 32

Сравнение температурных шкал

Описание

Кельвин Цельсий

Фаренгейт

Ньютон Реомюр

Абсолютный ноль

−273.15

−459.67

−90.14

−218.52

Температура таяния смеси Фаренгейта (соли и льда в равных количествах)

255.37

−17.78

−5.87

−14.22

Температура замерзания воды (нормальные условия)

273.15

Средняя температура человеческого тела ¹

310.0

36.8

98.2

12.21

29.6

Температура кипения воды (нормальные условия)

373.15

Температура поверхности Солнца

5800

5526

9980

1823

4421

¹ Нормальная температура человеческого тела - 36.6 °C ±0.7 °C, или 98.2 °F ±1.3 °F. Приводимое обычно значение 98.6 °F - это точное преобразование в шкалу Фаренгейта принятого в Германии в XIX веке значения 37 °C. Поскольку это значение не входит в диапазон нормальной температуры по современным представлениям, можно говорить, что оно содержит избыточную (неверную) точность. Некоторые значения в этой таблице были округлены.

Сопоставление шкал Фаренгейта и Цельсия

( o F - шкала Фаренгейта, o C - шкала Цельсия)

o F

o C

o F

o C

o F

o C

o F

o C

459.67
-450
-400
-350
-300
-250
-200
-190
-180
-170
-160
-150
-140
-130
-120
-110
-100
-95
-90
-85
-80
-75
-70
-65

273.15
-267.8
-240.0
-212.2
-184.4
-156.7
-128.9
-123.3
-117.8
-112.2
-106.7
-101.1
-95.6
-90.0
-84.4
-78.9
-73.3
-70.6
-67.8
-65.0
-62.2
-59.4
-56.7
-53.9

60
-55
-50
-45
-40
-35
-30
-25
-20
-19
-18
-17
-16
-15
-14
-13
-12
-11
-10
-9
-8
-7
-6
-5

51.1
-48.3
-45.6
-42.8
-40.0
-37.2
-34.4
-31.7
-28.9
-28.3
-27.8
-27.2
-26.7
-26.1
-25.6
-25.0
-24.4
-23.9
-23.3
-22.8
-22.2
-21.7
-21.1
-20.6

4
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

20.0
-19.4
-18.9
-18.3
-17.8
-17.2
-16.7
-16.1
-15.6
-15.0
-14.4
-13.9
-13.3
-12.8
-12.2
-11.7
-11.1
-10.6
-10.0
-9.4
-8.9
-8.3
-7.8
-7.2

20
21
22
23
24
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
125
150
200

6.7
-6.1
-5.6
-5.0
-4.4
-3.9
-1.1
1.7
4.4
7.2
10.0
12.8
15.6
18.3
21.1
23.9
26.7
29.4
32.2
35.0
37.8
51.7
65.6
93.3

Для перевода градусов цельсия в кельвины необходимо пользоваться формулой T=t+T 0 где T- температура в кельвинах, t- температура в градусах цельсия, T 0 =273.15 кельвина. По размеру градус Цельсия равен Кельвину.

Давление газа определяют хаотические удары перемещающихся молекул. Это означает, что уменьшение давления при охлаждении газа можно объяснить уменьшением средней энергии поступательного движения молекул (). Давление газа достигнет нуля, когда в соответствии с основным законом молекулярно кинетической теории:

Концентрация молекул газа n считается постоянной отличной от нуля.

Абсолютная температура идеального газа

Для охлаждения газа существует предел. Абсолютным нулем называют температуру, при которой прекращается поступательное движение молекул.

Идеальный газ (в отличие от реальных газов) остается в газообразном состоянии при любых температурах. Величину температуры, при которой прекратится поступательное движение молекул, можно найти из закона, который определил Ж. Шарль: температурный коэффициент давления идеального газа не зависит от рода газа и равен . При этом давление идеального газа при произвольной температуре равно:

где t - температура по шкале Цельсия; - давление при . Приравняем давление в выражении (2) к нулю, выразим температуру, при которой молекулы идеального газа прекратят свое поступательное движение:

В. Кельвин предположил, что полученное значение абсолютного нуля будет соответствовать прекращению поступательного движения молекул любого вещества. Температуры ниже абсолютного нуля (T=0 К) природе не бывает. Так как при температуре абсолютного нуля нельзя отнимать энергию теплового движения молекул и уменьшать температуру тела, так как энергия теплового движения отрицательной быть не может. В лабораториях получена температура близкая к абсолютному нулю (около тысячной доли градуса).

Термодинамическая шкала температур

По термодинамической шкале температур (она же шкала Кельвина) началом отсчета считается абсолютный нуль температур. Температуру обозначают большой буквой T. Размер градуса совпадает с градусом по шкале Цельсия:

Одинаковыми будут производные, если брать их с использованием разных температурных кал:

При переходе от шкалы Кельвина к шкале Цельсия сохраняются определения термических коэффициентов объемного расширения и коэффициента давления.

В международной системе единиц (СИ) единица температуры является основной, ее называют кельвином (К). В системе СИ термодинамическая шкала температур используется для отсчета температуры.

В соответствии с международным соглашением размер кельвина определяют из таких условий: температуру тройной точки волы принимают равной 273,16 К. Тройной точке воды по Цельсию, соответствует 0,01 o С, температура таяния льда по кельвину равна 273,15 К.

Температура, измеряемая в кельвинах, называется абсолютной. Связью между абсолютной температурой и температурой по Цельсию отражает выражение:

Абсолютная температура, кинетическая энергия молекул и давление идеального газа

Величина средней энергии поступательного движения молекул прямо пропорциональна температуре газа:

где - постоянная Больцмана. Формула (6) означает, что средняя величина кинетической энергии поступательного движения молекул не зависит от рода идеального газа, а определено только его температурой.

Давление идеального газа определено только его температурой:

Примеры решения задач

ПРИМЕР 1

Задание При какой температуре по шкале Цельсия средняя кинетическая энергия поступательного движения молекул газа будет равна Дж?
Решение За основу решения задачи примем закон, связывающий температуру по термодинамической шкале и среднюю кинетическую энергию молекул:

Выразим из (1.1) абсолютную температуру:

Проведем вычисления температуры:

Температура в кельвинах и температура по Цельсию связаны между собой выражением:

Получаем, температура газа равна:

Ответ

ПРИМЕР 2

Задание Как изменяется средняя кинетическая энергия поступательного движения молекул идеального газа, если процесс можно представить графиком риc.1?


Решение За основу решения задачи примем уравнение состояния идеального газа в виде:

Температура – физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Температура одинакова для всех частей изолированной системы, находящейся в термодинамическом равновесии. Если изолированная термодинамическая система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию температуры во всей системе (нулевое начало термодинамики). В равновесных условиях температура пропорциональна средней кинетической энергии частиц тела.

Температура не может быть измерена непосредственно. Об изменении температуры судят по изменению других физических свойств тел (объёма, давления, электрического сопротивления, эдс, интенсивности излучения и др.), однозначно с ней связанных (так называемых термодинамических свойств). Любой метод измерения температуры связан с определением температурной шкалы.

Методы измерения температуры различны для различных диапазонов измеряемых температур, они зависят от условий измерений и требуемой точности. Их можно разделить на две основные группы: контактные и безконтактные. Для контактных методов характерно то, что прибор, измеряющий температуру среды, должен находиться в тепловом равновесии с ней, т.е. иметь с ней одинаковую температуру. Основными узлами всех приборов для измерения температуры являются чувствительный элемент, где реализуется термометрическое свойство, и измерительный прибор, связанный с элементом.

Согласно молекулярно–кинетической теории идеального газа температура есть величина, характеризующая среднюю кинетическую энергию поступательного движения молекул идеального газа. Учитывая термодинамический смысл температуры, можно свести измерение температуры любого тела к измерению средней кинетической энергии молекул идеального газа.

Однако на практике измеряют не энергию молекул по их скорости, а давление газа, которое находится в прямопропорциональной зависимости от энергии.

По молекулярно–кинетической теории идеального газа температура Т является мерой средней кинетической энергии поступательного движения молекул:

где
Дж/К – постоянная Больцмана;

Т – абсолютная температура в кельвинах.

Основное уравнение молекулярно–кинетической теории идеального газа, устанавливающее зависимость давления от кинетической энергии поступательного движения молекул газа, имеет вид:

, (2)

где – число молекул в единице объёма, т.е. концентрация.

Используя уравнение (1) и (2), получаем зависимость

(3)

между давлением и температурой, которая позволяет установить, что давление идеального газа пропорционально его абсолютной температуре и концентрации молекул, где

(4)

Измерение температуры основано на следующих двух опытных фактах:

а) если имеются два тела, каждое из которых находится в тепловом равновесии с одним и тем же третьем телом, то все три тела имеют одну и ту же температуру;

б) изменение температуры всегда сопровождается непрерывным изменением по меньшей мере одного из параметров, не считая самой температуры, характеризующего состояния тела, например: объём, давление, электропроводность и др. Первое из этих положений позволяет сравнивать температуры различных тел, не приводя их в соприкосновение между собой.

Второе положение позволяет выбрать один из параметров в качестве термометрического.

В общем случае температура определяется как производная от энергии в целом по его энтропии. Так определяемая температура всегда положительная (поскольку кинетическая энергия всегда положительная), её называют температурой или температурой по термодинамической шкале температур и обозначают Т . За единицу абсолютной температуры в системе СИ (Международная система единиц) принят кельвин (К ). См. «Введение». Часто температуру измеряют по шкале Цельсия (
), она связана сТ (К ) равенством

;
(5)

где
– термический коэффициент объёмного расширения газа.

Температу́ра - скалярная физическая величина, характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

В состав производных величин СИ, имеющих специальное название, входит температура Цельсия, измеряемая в градусах Цельсия. На практике часто применяют градусы Цельсия из-за исторической привязки к важным характеристикам воды - температуре таяния льда (0 °C) и температуре кипения (100 °C). Это удобно, так как большинство климатических процессов, процессов в живой природе и т. д. связаны с этим диапазоном. Изменение температуры на один градус Цельсия тождественно изменению температуры на один Кельвин. Поэтому после введения в 1967 г. нового определения Кельвина, температура кипения воды перестала играть роль неизменной реперной точки и, как показывают точные измерения, она уже не равна 100 °C, а близка к 99,975 °C

Абсолютная Температурная Шкала - Термодинамическая температурная шкала или Международная практическая температурная шкала, по которой температура отсчитывается от абсолютного нуля в градусах Кельвина (кельвинах)

Абсолютная температурная шкала была введена, в науку не только для придания газовым законам более удобной фермы. Она имеет глубокий физический смысл.
Абсолютная температурная шкала или шкала Кельвина или термодинамическая температурная шкала признана Международным комитетом мер и весов в качестве основной. Определение термодинамической температурной шкалы базируется на втором законе термодинамики и использует цикл Карно. Одним из важнейших свойств термодинамической шкалы является независимость ее от термометрического вещества.

Для определения градуса шкалы используется одна реперная точка - тройная точка воды, а нижней границей температурного промежутка является точка абсолютного нуля. Тройной точке воды присваивается температура 273 15 К точно. Кельвина равен / 273.16 части термодинамической температуры тройной точки воды.
Абсолютная температурная шкала имеет нулевую точку при - 273 (Г 273 О.
Абсолютной температурной шкалой называется шкала, в которой за начало отсчета принята точка абсолютного нуля температур. Величина кельвина однозначно определяется требованием, чтобы температура тройной точки воды (реперная температурная точка, при которой в равновесии существуют жидкая, твердая и газообразная фазы вещества) была равна 273 16 К. Тогда нормальным точкам плавления льда и кипения воды по абсолютной шкале соответствуют температуры 273 15 и 373 15 К, и температурный интервал в 1 К равен температурному интервалу в 1 С.
Абсолютной температурной шкалой называют температурную шкалу, которая определяется термодинамическим методом таким образом, что она не зависит от выбора термометрического вещества. Нулевая точка этой шкалы определяется как наинпзшая термодинамически возможная температура. Абсолютная шкала температуры, которая используется в теплофизике в настоящее время, была введена лордом Кельвином (Вильямом Томсоном) в 1848 г. и поэтому называется также шкалой Кельвина.
Существует также абсолютная температурная шкала, которая использует градус шкалы Фаренгейта.
Желательность установления абсолютной температурной шкалы, не зависящей от свойств какого-нибудь отдельного вещества, уже была указана в гл.
Шкалы Кельвина и Ренкина - абсолютные температурные шкалы, основанные на законах термодинамики и представлении об абсолютном пуле температуры.
Абсолютная термодинамическая температурная шкала тождественна эмпирической абсолютной температурной шкале.
В связи с этим были предложены две абсолютные температурные шкалы - Кельвина и Ренкина, отличающиеся величиной принятой в них единицы измерения температуры.
В начале этой статьи было отмечено, что абсолютная температурная шкала может быть установлена с помощью любого соотношения, основанного на втором законе термодинамики и связывающего температуру Т с другими параметрами состояния.
Кроме стоградусной шкалы в науке и технике применяется абсолютная температурная шкала.
На основании этих выводов создана температурная шкала, названная абсолютной температурной шкалой.

7. Внутренняя энергия.

Вну́тренняя эне́ргия тела (обозначается как E или U ) - это сумма энергий молекулярных взаимодействий и тепловых движений молекулы. Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

§ - химический потенциал

§ - количество частиц в системе

Температура (в физике) Температура (от лат. temperatura - надлежащее смешение, соразмерность, нормальное состояние), физическая величина, характеризующая состояние термодинамического равновесия макроскопической системы. Т. одинакова для всех частей изолированной системы, находящейся в равновесии термодинамическом . Если изолированная система не находится в равновесии, то с течением времени переход энергии (теплопередача) от более нагретых частей системы к менее нагретым приводит к выравниванию Т. во всей системе (первый постулат, или нулевое начало термодинамики ). Т. определяет: распределение образующих систему частиц по уровням энергии (см. Больцмана статистика ) и распределение частиц по скоростям (см. Максвелла распределение ); степень ионизации вещества (см. Саха формула ); свойства равновесного электромагнитного излучения тел - спектральную плотность излучения (см. Планка закон излучения ), полную объёмную плотность излучения (см. Стефана - Больцмана закон излучения ) и т. д. Т., входящую в качестве параметра в распределение Больцмана, часто называют Т. возбуждения, в распределение Максвелла - кинетической Т., в формулу Саха - ионизационной Т., в закон Стефана - Больцмана - радиационной температурой . Поскольку для системы, находящейся в термодинамическом равновесии, все эти параметры равны друг другу, их называют просто температурой системы. В кинетической теории газов и др. разделах статистической механики Т. количественно определяется так, что средняя кинетическая энергия поступательного движения частицы (обладающей тремя степенями свободы) равнакТ, где k - Больцмана постоянная , Т - температура тела. В общем случае Т. определяется как производная от энергии тела в целом по его энтропии . Такая Т. всегда положительна (поскольку кинетическая энергия положительна), её называют абсолютной Т. или Т. по термодинамической температурной шкале. За единицу абсолютной Т. в Международной системе единиц (СИ) принят кельвин (К). Часто Т. измеряют по шкале Цельсия (t ), значения t связаны с Т равенством t = Т √ 273,15 К (градус Цельсия равен Кельвину). Методы измерения Т. рассмотрены в статьях Термометрия , Термометр .

Строго определённой Т. характеризуется лишь равновесное состояние тел. Существуют, однако, системы, состояние которых можно приближённо охарактеризовать несколькими не равными друг другу температурами. Например, в плазме, состоящей из лёгких (электроны) и тяжёлых (ионы) заряженных частиц, при столкновении частиц энергия быстро передаётся от электронов к электронам и от ионов к ионам, но медленно от электронов к ионам и обратно. Существуют состояния плазмы, в которых системы электронов и ионов в отдельности близки к равновесию, и можно ввести Т. электронов Тэ и Т. ионов Ти , не совпадающие между собой.

В телах, частицы которых обладают магнитным моментом , энергия обычно медленно передаётся от поступательных к магнитным степеням свободы, связанным с возможностью изменения направления магнитного момента. Благодаря этому существуют состояния, в которых система магнитных моментов характеризуется Т., не совпадающей с кинетической Т., соответствующей поступательному движению частиц. Магнитная Т. определяет магнитную часть внутренней энергии и может быть как положительной, так и отрицательной (см. Отрицательная температура ). В процессе выравнивания Т. энергия передаётся от частиц (степеней свободы) с большей Т. к частицам (степеням свободы) с меньшей Т., если они одновременно положительны или отрицательны, но в обратном направлении, если одна из них положительна, а другая отрицательна. В этом смысле отрицательная Т. «выше» любой положительной.

Понятие Т. применяют также для характеристики неравновесных систем (см. Термодинамика неравновесных процессов ). Например, яркость небесных тел характеризуют яркостной температурой , спектральный состав излучения - цветовой температурой и т. д.

Л. Ф. Андреев.

Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Температура (в физике)" в других словарях:

    - … Википедия

    ТЕМПЕРАТУРА, в биологии интенсивность тепла. У теплокровных (ГОМОЙОТЕРМНЫХ) животных, таких, как птицы и млекопитающие, температура тела поддерживается в узких пределах независимо от температуры окружающей среды. Это обусловлено мышечной… … Научно-технический энциклопедический словарь

    Размерность Θ Единицы измерения СИ К … Википедия

    Температура кипения, точка кипения температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости, так как … Википедия

    Главнейшим элементом, характеризующим погоду, является Т. газовой среды, окружающей земную поверхность, правильнее Т. того слоя воздуха, который подлежит нашему наблюдению. При метеорологических наблюдениях этому элементу и отводится первое место … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    температура - 1) Величина, характеризующая физ.тела в состоянии теплового равновесия, связана с интенсивностью теплового движения частей тела; 2) степень теплоты человеческого тела как показатель здоровья; разг. повышенная степень теплоты тела при… … Историко-этимологический словарь латинских заимствований

    Необходимо проверить качество перевода и привести статью в соответствие со стилистическими правилами Википедии. Вы можете помочь … Википедия

    История технологий По периодам и регионам: Неолитическая революция Древние технологии Египта Наука и технологии древней Индии Наука и технологии древнего Китая Технологии Древней Греции Технологии Древнего Рима Технологии исламского мира… … Википедия

    Температура, характеризующая равновесные состояния термодинамической системы, в которых вероятность обнаружить систему в микросостоянии с более высокой энергией выше, чем в микросостоянии с более низкой. В квантовой статистике это значит, что… … Википедия